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Reconstruction Error Characterization and
Control: A Sampling Theory Approach

Raghu Machiraju, Member, IEEE Computer Society,

and Roni Yagel, Member, IEEE Computer Society

Abstract—Reconstruction is prerequisite whenever a discrete signal needs to be resampled as a result of transformation such as
texture mapping, image manipulation, volume slicing, and rendering. We present a new method for the characterization and
measurement of reconstruction estor in spatial domain. Our method uses the Classical Shannon’s Sampling Theorem as a basis to
develop error bounds. We use this formulation to provide, for the first time, an efficient way to guarantee an error bound at every
point by varying the size of the reconstruction filter. We go further to support position-adaptive reconstruction and data-adaptive
reconstruction which adjust filter size to the location of reconstruction point and to the data values in its vicinity. We demonstrate the
effectiveness of our methods with 1D signals, 2D signals (images), and 3D signals (volumes).

1 INTRODUCTION
R ECONSTRUCTION is the process of recovering a continu-
ous function from a set of samples. It is one of the fun-
damental operations in computer graphics and imaging.
Many algorithms, such as texture mapping, image registra-
tion, image transformation (e.g., rotation, scaling), and vol-
ume rendering, transform a raster (2D or 3D) from a source
space to a target space. All these algorithms must reconstruct
the underlying function in either space. Given the essential
nature of the reconstruction operation, it is surprising that,
although much work has been expended in the design of
reconstruction filters, not much attention has been paid to
characterize and control its numerical accuracy. Inaccurate
reconstruction can manifest in image artifacts and make
subsequent operations error prone.

The work described here is aimed to give the user, for the
first time, the ability to set a point-wise error bound. Unlike
existing methods, which use frequency domain analysis to
guarantee some global error bound, we use spatial domain
error analysis to guarantee that, for a given threshold ¢, the
difference between the reconstructed function and the real
function is not more than € at any point. Our spatial domain
analysis culminates in a formal expression for the error
bound at every point (15). Examining this expression, we
observe a dependency between error magnitude and the lo-
cation of reconstruction and data values. Unlike existing
methods, we can, therefore, adapt filter size to both recon-
struction location and data complexity, using rigorous esti-
mates. A shorter version of this work is available in [22]. We
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present several more results in this paper. In Section 2, we
introduce the terminology and methods currently empha-
sized in reconstruction methods. In Section 3, we describe
our approach, and in Sections 4-6, we present our results.

2 BACKGROUND

An image or a volume is usually in the form of a regular
rectilinear grid or a mesh of sampled function values termed
pixels (image) or voxels (volume). When 2D images are sub-
jected to affine transformations (e.g., translation, scaling,
rotation [5], [12], [28]), or when they are subjected to nonaf-
fine grid deformation (perspective, texture mapping [13],
warping [2], [38]), the function value in the form of pixel
intensity has to be reconstructed on the target grid, com-
monly called the resampling grid. Similarly, resampling is
also needed when a 3D volume [17] is subjected to affine
transformations (e.g., translation, scaling, rotation [12], or
orthographic ray casting [39]) or nonaffine transformations
(e.g., perspective ray casting [16], deformation [19]). Voxel
intensity, opacity, or color need to be determined at inter-
mediate points inside the volume. Interpolation is the re-
construction method of choice in all the aforementioned
algorithms. Reconstruction in the source grid is much rarer
and is conducted through the use of reconstruction kernels.
Shearing [12] and splatting [37] are the only two well
known volume rendering algorithms to reconstruct func-
tions in target grid. However, both forms of reconstruction
are equivalent, and, in this paper, we shall examine recon-
struction in terms of function interpolation. '

In this paper, we distinguish between resampling schemes
and reconstruction operations. Resampling schemes provide
the points where the functions are reconstructed. The subse-
quent use of these points is also dictated by the resampling
schemes. A typical resampling scheme (e.g., volumetric ray-
casting) can be described by the functional x; = x; + bk, where
%g is the location of the first point and b is the distance between
the resampling points (Fig. 1a). The signal is thus resampled
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onto another grid, and the number of data points can change
as a result of scaling inherent to the resampling operations.
Once the location of the resampling point R is obtained (see
Fig. 1b), reconstruction is performed to obtain the function
value at R from the known function values S;. This distinction
between resampling scheme and reconstruction is rooted in
practice and is different from the purely theoretical perspective
that dictates that the function be first reconstructed every-
where and that resampling be subsequently conducted. We
now examine some ideal reconstruction methods.

Sn.1 Sn Sn+1 Sps2

s I T

el e | of o] [ ]

T

D . . . . .

®)

Volume
Screen

@ Resampling Point

(a)

Fig. 1. Difference between resampling and reconstruction. (a) Resam-
pling dictates the set of (gray) points for volumetric ray-casting
(schematically represented by a 2D grid). Function values are recon-
structed at such intermediate locations. (b) A 1D example illustrating
reconstruction at point R from the samples S;.

2.1 Ideal Reconstruction—Method and Assumptions

Much has been written about the reconstruction of sampled
datasets in the fields of signal processing [26], image proc-
essing [7], [15], and graphics [10], [38]. We briefly discuss
some of the important assumptions and results from this
body of literature. Another body of work on the same
problem is available in the applied mathematics literature
[33], [41], where the process is usually referred to as inter-
polation. Although the following discussion is in terms of
1D signals, it is also applicable to 2D and 3D signals. The
results of the following discussion are indeed extended to
2D (in Section 5) and to 3D (in Section 6).

We denote by f(x) a continuous function (the signal)
which is sampled into the discrete function f,(kh), where h is
an equidistant gap between samples and k is an integer. In
many computer graphics, image processing, and scientific
visualization applications f(x) is not available; we have only
f.» which is the discrete image we need to manipulate.

The fundamental assumption made in this paper is that
the original continuous ‘function, f(x), is bandlimited. A
function is bandlimited if there exists a frequency ,, called
the cut-off frequency, such that the strength of any frequency
component greater than o, is zero. These assumptions are
not too restrictive, because the notion of bandlimitedness is
general and can be applied to many forms of sampled data
used in computer graphics and scientific visualization.
During the process of acquiring digital images, acquisition
devices (e.g., cameras, scanners) perform a filtering opera-
tion and bandlimit the function. Images generated by nu-
merical simulations of physical phenomena (common in
disciplines such as computational fluid dynamics) are also

bandlimited, because typically robust numerical solutions
can be obtained only if the algorithm incorporates a
smoothing step. Finally, all rendering and scan-conversion
algorithms, in order to provide antialiased images, typi-
cally employ a filtering step that bandlimits the image. To
illustrate this point we examine the frequency spectrum of
the mandrill image (Fig.2). One would expect the fre-
quency content to be very high, given the profusion of very
small details. It can be readily seen that the Fourier trans-
form is sparse and can be thought to be limited to a small
region around the center. Malzbender presents similar ob-
servations for volumes obtained through medical acquisi-
tion devices (e.g., CAT Scans, MRI) [20].

®)

Fig. 2. (a) The mandrill image. (b) The frequency spectrum of the im-
age obtained through a Fourier transform of the original image. It is
worth noting that the spectrum is sparse and is limited to a region near
the center. The size of the significant spectrum along the Y-axis is
measured by the frequency guard r (Section 3.1).

Another important assumption is that the continuous
signal f is sampled at or above the Nyquist frequency. The
Nyquist frequency of a signal is defined as twice the maxi-
mum frequency of the signal. Thus, in our context of ban-
dlimited functions, the Nyquist frequency o, is given by
2w, and the sampling frequency o, is always greater than
or equal to ®,. This assumption is essential if we are to re-
construct the function exactly. The Shannon’s Sampling
theorem states that any bandlimited continuous signal f(x),
if sampled at or above its Nyquist frequency (yielding the
discrete function f,), can be reconstructed as shown in (1)
(vielding the continuous function f,) [26], [33]. A final as-
sumption is that f,(x) is uniformly sampled from f(x).

Thus, we reconstruct with the formula

£ = 3 S,k M) (kD) 0
k=—oo
where
1 x =kh

. T :

S(x, k, h) = smﬁ(x—kh) i @)
T
ﬁ(x — kh)

The function S(x, k, h) is called the Sinc function. Recon-
struction is essentially a convolution operation between the
Sinc function and the sampled dataset. The Sinc function is
an ideal filter. It does not attenuate any of the inherent fre-
quencies in a signal.

We can extend this discussion to multiple dimensions.
We use separable filters, which sample the data successively
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along each axis. Thus, in 2D the reconstruction equation
becomes:

)= Y S S nsy, i mEm ) @)
i=—co j=—oo

For 2D images, the reconstruction requires the product
of two Sinc functions, and similarly we can use three Sinc
functions in 3D. Although separable filters are fast and eas-
ily implemented, separability typically introduces ani-
sotropic effects because the 2D or 3D separable filter is
aligned with the principal axes [24]. Anisotropic effects are
always present unless a radially symmetric filter is em-
ployed. It is important to note here that the Gaussian is
both a separable and an isotropic filter and does not intro-
duce anisotropic errors. In this paper we limit ourselves to
separable filters.

2.2 Practical Reconstruction Methods and Errors
The ideal reconstruction process from (1), although realiz-
able, is rarely used in practice, because it requires the con-
tribution from all elements of the dataset. An obvious solu-
tion is to truncate the function to include only 2M + 1 inte-
ger valued points:

fu(x, M, B) = Zs (x, k, 1), (kh) @
The resulting interpolation filter is called a finite impulse-
response (FIR) filter of order 2M + 1 and linear phase. The
quantity M is usually referred to as the half-filter length. We
call the ensuing error truncation error and it is denoted by e;.

ei(fS' x, M, h) = 7(x’ h) - frt(x’M' h)l

Y S(x, k, h)f (ki) 5)

[e|>m

et(fs,x,M h

Elsewhere in the literature, this error is often referred to
as post-aliasing [24]. Truncation error manifests itself as
blurring, aliasing (jaggies), and ringing in an image. In prac-
tice, the function is never reconstructed with a truncated
Sinc. Truncation is tantamount to multiplying the infinite
filter with a spatially limited rectangular window. As a re-
sult, the frequency spectrum of the truncated Sinc filter suf-
fers from distortions in the form of aliasing and oscillations.
The oscillations, a consequence of Gibbs phenomenon in the
frequency domain, manifest visually as an annoying ring-
ing artifact [26].

A common solution is to use a window function besides a
rectangle [23], [26]. We employ the Hamming window in
the work reported here (6). The significant aspect of this
function is that it falls gradually to zero at the corners of the
window and hence reduces the impact of ringing caused
through the use of the rectangular window.

0y (1) = 054+046COS(M 1] < M+1 ®

otherwise

An appropriate filter can be obtained by multiplying this
function with the Sinc to obtain a modified Sinc function.
We can also use any of the commonly used reconstruction

filters [36]. Other solutions include using trilinear interpo-
lation (cone filter) and the cubic convolution filters [10],
[24]. For multiple dimensions ,we can use a product of two
1D window functions to get a 2D window function.

If the NS (Non Sinc) filter is different from the Sinc func-
tion (and is the windowed Sinc fllter) then the recon-
structed function is given by:

2 NS(x, k, b)f,(kh) <7>‘

k=—

Fuloe, M, B) =

Thus the total reconstruction error, denoted by e,, is equal
to:

fx 1) = Fule, M, )
The total error can be divided into two components:
e(frx, M R) = £, B) = folie, MU R)+ fy(e, ML) = Fy(x, M, )
(e M, 1) < If (1) = £ (e, M) + £ (e, ML) = o, MU )| )

er(fs,x,M,h) =

8

The first component is the truncation error e;, while the sec-
ond error arises from the use of a filter besides a Sinc func-
tion. We call the latter non-Sinc error, denoted by e,;. Thus,
the total reconstruction error is

e,(fs x, M, h) < e(fsx, ML R) + e (f, %, M, 1) (10)

In [34], a similar characterization of the error was at-
tempted; the reconstruction error was the sum of again the
truncation error and errors that arise when filters different
from the ideal are used. An application of this error char-
acterization leads to the conclusion that reconstruction with
functions different from a truncated Sinc leads to lower
quality images. However, it is well known that the trun-
cated Sinc filter actually possess a lower mean square error
from the ideal frequency response than filters obtained
through the use of a nonrectangular window [26]. There-
fore, it is important to note that this characterization of the
reconstruction error is purely numerical and is not based
on perceptual considerations that address the issue of the
suitability of an image to a human observer. Although
there is a positive correlation between numerical error and
image quality, not much is known about their relationship
[32]. A perceptual model, for example, will assign a larger
error to truncated Sinc filters than to windowed Sinc. We
do not even attempt to address these very complex ques-
tions here.

2.3 Previous Work

The study of reconstruction errors has received some atten-
tion in the graphics and image processing literature. How-
ever, in 1D digital signal processing considerable effort has
been expended on multirate filtering [6] which can be ap-
plied to general function reconstruction to some extent. A
sampled signal can be decimated (reduced number of sam-
ples) by a factor of N : 1 or interpolated (larger number of
samples) by a factor of 1.: M. By choosing a different set of
integers for M and N different resampled points are ob-
tained. The approach disallows getting all possible resam-
pling points of the signal and also it is conducted on the sig-
nal in its entirety. Although multirate filtering may be em-
ployed in some situations like supersampling in a raycasting
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algorithm, it is unlikely to be of much benefit in a general
function reconstruction framework. Recently, fractional in-
terpolatory methods have been reported for audio applica-
tions [9]. The reported method is similar to the one reported
in here, except a pointwise error metric is not employed and
once again the focus is on reconstructing a signal in its en-
tirety.

. We now review some previous work from imaging and
volume rendering literature. In [29], Parker et al. compared the
effectiveness of some reconstruction filters. However, they
propose no metrics that can be used to judge the goodness of a
reconstruction filter. Mitchell and Netravalli [24] first intro-
duced the reconstruction metrics pre-aliasing and post-aliasing.
Marschner and Lobb [23] further characterized post-aliasing
artifacts; the proposed metrics, smoothing and post-aliasing, can
help design a suitable filter. However, none of these measures
are well suited for determining the accuracy of an interpola-
tion or filtering scheme on a sampled dataset.

Many filter design methods lie in either the frequency
domain or the spatial domain. For example, in the image
processing and graphics literature, Keys [18], Max [21],
Park and Schowengerdt [27], and Mitchell and Netravalli
[24] use spatial methods to design reconstruction filters that
satisfy certain functional properties (the existence of de-
rivatives, etc.). All of these methods make assumptions
about the interpolated function, and they deliver filters
which perform well on smooth functions. On the other
hand, Carlbom [3] uses frequency methods to design filters
that are solutions of a nonlinear optimization process. This
approach yields a filter of finite length whose frequency
response closely approximates the ideal filter response.

Among these efforts only Carlbom [3] considers recon-
struction error. However, this error is defined in the fre-
quency domain and measures only the deviation of the
frequency spectrum from the ideal spectrum (a box in fre-
quency domain). Also, this metric is global in nature and
does not provide error control on a point-wise basis.
Moreover, this and other global frequency domain methods
are not conducive to our goal of adapting the filter size to
the resampling location and to local data characteristics.

Our method estimates the filter size for a given resam-
pling location so we can interpolate to a desired level of
accuracy efficiently. For example, a less expensive interpo-
lation scheme can be used at some locations (e.g., near grid
locations in source space). Similarly, a more expensive
scheme is warranted at other locations (e.g., far from grid
locations). In addition, we also determine the filter size
from the complexity of the data at the resampling point.
This gives us an efficient yet accurate resampling method.

There is a body of work dedicated to filtering in texture
spaces that attempts to address the issues of error control and
adaptivity. Fournier and Fiume [8] use spatial methods and a
least square error (L* norm) estimate (with data included) to
guide efficient and accurate anti-aliasing of textures. They also
allow adaptive filtering in a manner similar to MIP maps. How-
ever, their method is complicated and does not use memory
efficiently. Norton et al. [25] use a frequency domain approach
to perform adaptive filtering. They use a coarse measure of
goodness to clamp all frequencies beyond a certain range.
However, the adaptivity is not driven by any user-defined error

threshold but is guided by an ad hoc measure of the robustness
of the filtering operation in the frequency domain.

Adaptive filtering in the frequency domain is also re-
ported by Totsuka and Levoy [35] for 3D volumes. Again,
the adaptivity is not driven by an error threshold. Also, the
technique requires that the filtering be conducted in the
frequency domain, which requires transforming and stor-
ing a a large 3D dataset.

In summary, many of the past efforts provide neither
any means of controlling the reconstruction error nor
adaptive reconstruction of the continuous signal. The
methods that provide error specification and control in the
spatial domain are rather complex, while the methods that
provide adaptivity are either inconvenient or available in
the frequency domain only. These shortcomings motivate
our attempt to develop spatial domain methods that allow
the specification of error bounds and allow the use of dif-
ferent filter lengths adapted to the reconstruction operation
and local data complexity. Our method can be successfully
employed in resampling operations and texture mapping.
In the next section we provide the necessary theory and
develop adaptive spatial-domain methods.

3 RECONSTRUCTION ERROR ESTIMATES

In this section we provide estimates of truncation error and
the non-Sinc error. Researchers in mathematics and electri-
cal engineering have been long concerned with the accu-
racy of sampling schemes. In both fields, some work has
been done that can be used to estimate the truncation error.
We present some appropriate results from complex analy-
sis for the sake of completeness. Later, we obtain bounds
for the truncation error. The estimates for non-Sinc error,
which are much easier to obtain, are also presented in this
section.

3.1 Truncation Error Estimates

Equation (1) is the starting point for our effort. The true
error can be computed for spatially limited signals such as
images and volumes. However, in the presence of a large
number of sampled data points, the computation can be
prohibitively expensive. From (1), we can compute the
function value at the resampling point R as follows:

m
= sin-(x —kh
L)fs(kh) (11)

T
= T (- k)

Let the resampling point R lie in cell #, i.e., between
sampled data points S, and S,,;. Also, let T be the distance
of R from S,; in other words, x = nk + 1. The truncation
error is obtained from (11) by dropping 2M + 1 terms of
the above infinite summation. Thus, the truncation error,
eff,, n, 1, h, M), is given in (12).

T
sin+-(nh+7—kh
T G )

e(fom 7.k, M) = f(nh+7)~ i

T
k=—M __

h

A change of variable (let m = 1 — k) allows us to rewrite the
above equation in a more convenient form as shown in (13).

(nh+ 7 - kh)
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sin % (mh + 1)

e,(f,n, 7,1, M) = f((n=mn) (13

fmi>M %(mh +7)

Expanding the sinusoidal term inside the summation and let-
ting sinzmn = 0 and cosm =—1" for all values of m, we get (14).

T

e,(fo 7.1, M) = Smf 2 (r;lli T)fs((”—"@h) (14)
— |mpM
h

It is easy to determine a bound from (14):

T

hsinT

fs((n - m)h)‘
l(mh + T)‘

e,(f.m, 7, h M) < (15)

[mj>M
We now make two important observations from (15).

OBSERVATION 1. The truncation error depends on the loca-
tion of the resampling point R. If R is located at the
center of a grid cell in the source space, i.e., T = 0.5x, it
attains its maximum value and drops off to zero as
one moves closer to the sampled data locations (1 =0
or T = /). The denominator in each term measures the
distance of the resampling point from the sampled
data. Examining the sum in (15), one finds that it can
be split further into two more sums. The denominator
of terms in the first sum (for negative values of m) can
be rewritten as —((m — Dk + (h — 1)), while in the sec-
ond sum (for positive values of m) the original ex-
pression in terms of m and T remains. It is now easy to
see that the error is maximum for 7 = 0.5k, since equi-
distant samples are given the same weights. In [29],
similar observations are made. However, these obser-
vations were made in the frequency domain. Also, the
error was not quantified. An important implication
from this observation is that one can use filters of dif-
ferent lengths depending on the location of the re-
sampling point. In the following section, we shall
provide evidence to illustrate this fact using 1D and
multidimensional examples.

OBSERVATION 2. For large values of m, the contributions by
sampled data values to the error bound is small. In
(14), the term which contributes numerically for a

given 1 is the term ——. Using Taylor Series Expan-

mhtt
sion one could write

! - R(m,h,7) 0
1 — m,h,T) m#
L (mh) (16)
mh+7T 1
- m=20
T
where the remainder term R(m, ki, 1) is defined as
72 0
—  m=z
R(m, B,7) = § (mh)? (mh + 7) (17)
0 m=20

The function R(n, &, 1) is a rapidly decreasing func-
tion in m. It therefore suffices to evaluate the function
for only a few values of m around the resampling

point R. Indeed it has been shown in [34] that it suf-
fices to consider only values of m, such that Im| <3
for a maximum normalized root mean square error of
2.75 percent.

The main use of this observation is the behavior of this
bound in two and three dimensions. For multidimensional
separable filters, the contributions are even much smaller
since each denominator is the product of two or three dis-
tance terms. The implication of this observation is that we
can effectively limit ourselves to reasonably sized neigh-
borhoods. Thus, for Iml <3, we incur an error of 0.075
percent when we consider truncated sum in fwo-
dimensional square neighborhoods each with side of length
three pixel units and an error 2.7 x 107 percent for three
dimensions. This observation allows even more efficient
implementations of the reconstruction operation because
even smaller length filters can be used.

This error bound in (15) is still not computationally
practical because all sampled data points have to be con-
sidered. Moreover, this bound overestimates the error be-
cause it does not take into account the oscillating nature of
the Sinc function. We now consider some tractable error
bounds that can be used in practice. The error bound for
this infinite sum can be found by resorting to complex
analysis [40]. However, before we state the relevant results,
we discuss the important idea of frequency guards.

Frequency guard bands allow the approximation of the
infinite sum in (15) by the integral of an analytic function
that exists on the real line. A frequency guard of width 7,
0 < r <1 measures the size of significant spectrum of the
signal. Thus, by choosing a guard of size r, we are limit-
ing ourselves to frequencies less than r®,. The frequency
guard can be found by determining the ratio of the maxi-
mum significant frequency of the spectrum and the cutoff
frequency. However, for most graphics and imaging ap-
plications, it is sufficient to use very crude estimates. In
Fig. 2b, the size of the frequency guard along the Y direc-
tion is shown. We shall address this issue further in Sec-
tion 4, in which we discuss results and implementation
issues.

The methodology used in [14], [40] can be applied to
determine the error of any polynomial approximation
scheme. In fact, such a methodology has been used to esti-
mate the error of Legendre and Hermite Polynomial inter-
polation. The mainstays of this approach are the theory of
analytic functions and the application of Cauchy’s Integral
Formula and Residue Theorem [31].

3.1.1 Results from Complex Analysis

We state some results from complex analysis but we do not
present proofs here. The Appendix contains the proof. The
error bound can be obtained in terms of either the maxi-
mum of the function value Mazx;, or the spectral energy of
the function, E. Because all signals under consideration
have finite energy and are real and available as sampled
datasets, Ef can be simply determined by:

(18)
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This relationship is a direct consequence of the Cardinal
Series Expansion [33]. We now state Theorem 1, which ex-
presses the truncation error bound in terms of the spectral
energy of the function.

THEOREM 1. The truncation error eff,, x, k, h, M), in terms of the
total energy of the signal, is bounded from above by the

quantity
ZEf\g

T (1- )M

m‘
sin
h
e(f,, x, k,h, M) < (19)
Thus, we are able to express the truncation error bound
in terms of the energy of a function and the frequency
guard 7. If once again x = nh + 1, i.e., it lies in the cell n of
the source grid, we can replace x with 1 (refer to (15)). We
now state another theorem, Theorem 2, which expresses the
error bound in terms of the maximum of a function. The
proof for this theorem is similar to that of Theorem 1 and
we are therefore not including it, for the sake of brevity.

THEOREM 2. The truncation error eff,, x, k, h, M), in terms of the
maximum value of a function, Max; is bounded from above

by the quantity
x
Maxf sin 7'
e(f, x, kb, M) < — (20
M cos 5

We now characterize the error that arises from the use of
a function different from a Sinc function.

3.2 Non-Sinc Error

The use of the truncated Sinc induces visual artifacts in-
cluding ringing, blurring, and aliasing. Therefore, other
interpolating functions are used including either a specially
designed one (e.g., cubic convolution) or the Sinc function
suitably modulated by a smooth window function. We,
however, need to estimate the error that arises from the use
of windowed function. Thus, we now have a function NS
instead of the Sinc function S. Once again we can use either
the spectral energy or the maximum value of the function.
Using Parseval’s Theorem [26] and (18), we can write

I
e,(f, x,n,h, M) < Ef(M)\/Z? f; |s(¢,0, 1) - NS(t, 0, h)]zdt Q1

The integral computes the difference between the two
functions in the L* norm space. The quantity EAM) is the
energy of the signal in a 2M + 1 sized neighborhood around
the resampling point R. Because the filters are space invari-
ant we evaluate the filters when placed at x = 0 for sake of
convenience. One can similarly define a bound including
the maximum value of the function:

e,(f,x,m, 1, M) < Max,(M)[ " [8(t,0,1) ~ Ns(t,0, B)dt (22)

The quantity Max{M) is the maximum value of the
function in a 2M + 1 neighborhood. Once again, we are de-
termining the difference in the areas of the two filter func-
tions. The non-Sinc error is much smaller in value in com-
parison to truncation error. We measured the error using

(21) and (22) and compared the values against corre-
sponding estimates of truncation error. In the case of win-
dowed Sinc it was noted that the non-Sinc error was quite
insignificant compared to the truncation error (by a factor
of five at least). Therefore, we do not consider it further in
this paper. In [34], a similar division of errors was con-
ducted and once again the truncation error was mostly
considered.

In this section, we described the errors that arise from
filtering operations. In Section 4, we use these measures to
predict reconstruction errors that arise from representative
resampling operations and then show how these predic-
tions can be used to perform adaptive reconstruction.

4 ACCURATE AND ADAPTIVE RECONSTRUCTION OF
1D SIGNALS

In this section, we test the validity of the bounds on 1D
signals. We also illustrate the usefulness and viability of
adaptive schemes. In the subsequent sections we imple-
ment our schemes for particular 2D and 3D resampling
schemes.

In Fig. 3 we consider a 1D signal obtained from row 300
of the Lenna image. It is worth noting that the signal under
consideration has very small energy content. One can esti-
mate the value of the frequency guard, », by simply com-
puting the first few Fourier coefficients above a user-
defined threshold. It was observed that the value of the
guard was usually less than 0.1 for all images considered
for this work. In other words, most of the energy of the
function is characterized by the first one-tenth of the
Fourier coefficients. The more accurately one measures the
frequency guards, the better the estimates are. However,
even coarse estimates can suffice for many signals and re-
sampling situations in computer graphics.
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Fig. 3. Intensity values for scanline 300 of the 512x512 Lenna image.
The intensity values are normalized to the maximum possible pixel
value, namely 255.

The actual error from (15) and the error estimates from
(19) (using energy) and (20) (using maximum values) are
determined when the signal is resampled onto a new grid
(Fig. 4). The function is reconstructed at x; = xy + 0.99%k,
where x; is the location of the first row pixel and k is an
integer. The estimates from (20) are looser, and we found
the energy estimates closer to the actual error for many sig-
nals and resampling schemes.

Here we can actually see evidence for Observation 1
made in Section 3.1. The error behaves in a periodic manner
for the representative resampling scheme. If a larger re-
sampling frequency is chosen, the periodicity of the error is
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Fig. 4. Comparison of Error Estimates. The actual error and the esti-
mates from (19) (energy) and (20) (maximum) are plotted. Both esti-
mates bound the actual error well, the energy estimates being closer.

higher. One can readily conclude that the filters of the same
length need not be used everywhere during the resampling
operation. To use different filters at different resampling
positions, we can use the error estimates of (19) and (20).
For instance, we can set the point-wise error to ¢ for all x
along the length of the signal. The required filter length at
resampling point x can be determined from the computa-
tion listed in (23).

rl  mx
y 2Ef E smT ( )
x) = 23
) (1 -71)e

The dashed line in Fig. 6 shows the minimum filter
length at all points required for the resampling of the signal
of Fig. 3 to obtain a user defined accuracy of £ = 0.02. The
maximum filter length employed for reconstruction is 27 (=
13*2 + 1). We call this filtering scheme position-adaptive,
because the size of the filter is influenced only by the posi-
tion of the resampling point. If frequency domain methods
of filter design are used, usually filters of even greater
length are obtained from the design process. Also, it is not
certain that the desired level of accuracy is guaranteed from
the application of such a filter.

In Fig. 4, we used the total energy or the global maxi-
mum value of the function to compute the bounds. The
estimated bounds are conservative. Taking into account the
rapid decay of the Sinc function as one moves away from
the resampling point, it might be useful to consider the en-
ergy or maximum of a function over a neighborhood of
somewhat significant size as stated in Observation 2 of
Section 3.1. The problem is now reduced to determining a
window of appropriate size that is suitable for a given sig-
nal. This can be determined easily from the estimates of the
bounds itself. We can set the minimum error of resampling
€. that can possibly arise during resampling. Then we can
simply calculate the neighborhood size M, by using either
(19) or (20). We use energy estimates to determine the op-
timum neighborhood size.

i
2E, 7 [sin Zh‘

T rH1-re

(24)
min

The value of 7 is set 0.5 to cover all possible resampling posi-
tions. Now we can determine the maximum or the energy
over a neighborhood of this size. Equation (23) then becomes

. nT
SN ——
h

2Ef\/r(hTe)

m(1-r)e

M(x) = (25)

A preprocessing step is now required that computes the
energy or the maximum of the function value over neigh-
borhoods. In Fig. 5, we plot the true error and the estimates
using energy and maximum values over a neighborhood of
size M, = 25. The estimate based on energy-is now very
close to the actual error. The solid line in Fig. 6 shows the
sizes of the filters used when a neighborhood of size 25 is
used for the signal of Fig. 3. The maximum and average
size of the filters are significantly lowered. The use of
smaller neighborhoods yields smaller filters and hence
savings in reconstruction time. We call this filtering scheme
data-adaptive.
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Fig. 5. Comparison of Error Estimates. The actual error and the esti-
mates from (19) (energy) and (20} (maximum) are plotted when a
neighborhood of size 25 is used to compute the maximum or the en-
ergy. The estimate based on energy follows the actual error very
closely.
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Fig. 6. Comparison of Filter Lengths. The filter half length, ‘M, is plotted
for the signal of Fig. 3. The dashed curve provides the length of the
filter at the resampling points when the position-adaptive scheme is
used. The solid curve provides the filter lengths for the data-adaptive
scheme. The lengths were obtained using energy estimates for an error
threshold of 0.02.

The behavior of the bounds is different when the same
signal is subjected to a plain translation. This form of resam-~
pling occurs during shearing transformations, image regis-
tration, optimized versions of volumetric ray-casting, eftc.
The error does not behave in the same periodic manner as
before because the displacement along the source space grid
is constant. The truncation error is dictated more by the data
complexity than by the position of the resampling point. We
do not show the error plots for such resampling schemes.
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In all our 1D experiments, we used the rectangle win-
dow function to compute the truncation error and hence
did not incur the non-Sinc error. If another window func-
tion were employed, the total error would no longer be the
same. Although the total error no longer reaches zero, the
periodic nature of the resampling error remains un-
changed. Although a nonrectangular window is used, the
adaptive scheme can still be based on the truncation error.
Finally, to provide a basis of comparison we reconstructed
the signal of Fig. 3 with

¢ an infinitely long Sinc filter (no truncation);

¢ a truncated Sinc filter whose length is not dependent
on the data complexity (position-adaptive);

® a truncated Sinc filter whose length is influenced by
the data complexity (data-adaptive); and

¢ a cubic spline filter described in [24].

Since the signals in question are finite in extent, we may
use Sinc functions whose lengths are limited by the length
of the signal. However sufficiently long Sinc functions pro-
vide accurate enough estimates of truncation error. We
then determined the errors of reconstruction by computing
the difference between the perfectly reconstructed function
(using the infinitely long Sinc filter) and the functions re-
constructed using the nonadaptive, adaptive, and cubic
spline filters. We also set a threshold of 0.02 for both filter-
ing schemes as before. In Fig. 7, we plot the reconstruction

errors as measured against the perfectly reconstructed sig-

nal. The position-adaptive scheme always delivered recon-
struction to the desired level of accuracy (= 0.02). The data-
adaptive scheme for most of the signal fared well. How-
ever, in regions of rapid changes in function value, it un-
derestimated the error. The cubic convolution scheme, on
the other hand, was not sensitive to either the position of
the resampling location or the data complexity. The error of
reconstruction was also sometimes much larger than the
desired level of 0.02. If the desired level of accuracy is re-
duced to 0.002, both adaptive schemes fare well, while the
performance of the cubic convolution filter remains the
same. Having shown the effectiveness of our error meas-
ures we now provide 2D examples.

5 ACCURATE AND ADAPTIVE RECONSTRUCTION OF
2D IMAGES
We considered a few two-dimensional images to show the

usefulness of the methods developed here. Equations (19)
and (20) now simply become

LE Bty | el
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The quantities 7, and r, are frequency guards for each of
the dimensions in the frequency domain and can be
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Fig. 7. Effectiveness. of Reconstruction Schemes. (a) Error obtained
from position-adaptive scheme. (b) Error from data-adaptive scheme.
(c) Error from a cubic convolution filter. The filter sizes are shown in
Fig. 6. The error threshold was set to 0.02.

values are now determined for all points in the image. The
error estimates and filtering schemes can be adapted to
images and volumes very easily. The position-adaptive
scheme does not require any preprocessing, while the data-
adaptive scheme requires that the energy or the maximum
of the underlying function be determined over a neighbor-
hood. By specifying the minimum desired error, we can use
a derivative of (27) (and similar to (24)) to determine the
size of neighborhood required to achieve the desired error
of €,;,. The local energy and maximum values are then
stored for each pixel. At each resampling point, filter size is
then determined by using the error estimates, and then ap-
plied in the 2D neighborhood. We also employ the 2D
Hamming window to obtain images of higher visual quality.

Fig. 8a shows the image of a simulated flow rotated by
25 degrees and scaled down by 0.75 along both dimensions
while guaranteeing error threshold & = 0.02. Unlike in the
more complicated shearing schemes used in image ma-
nipulation packages, we employed a very simple resam-
pling scheme: A bounding box is first found and all pixels
within it are scanned and mapped back to the source space
of the original image. Fig. 8b provides a comparison be-
tween the error in the data-adaptive and the position-
adaptive schemes. One can see that differences exist in ar-
eas where the pixel intensity changes significantly over
small areas, e.g., near edges.

TABLE 1
HALF-SIzE OF FILTERS USED
IN THE RECONSTRUCTION OF FIG. 8.

Method Minimum | Maximum | Average
Position-Adaptive 1 11 6.75
Data-Adaptive 1 5 2.33
Cubic Convolution 2.5 2.5 2.5
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Fig. 8. (a) Fiow simulation image after affine transformations of scaling
by 0.75 (along both directions) and rotation of 25 degrees. Reconstruc-

- tion was done with the position-adaptive method with & = 0.02. (b) A

difference image between the position-adaptive and the data-adaptive
methods. Differences were exaggerated to make the pattern visible.

Fig. 9 shows, in the form of a gray scale image, the dif-
ferent filter sizes used for the rotation. The difference in the
filter lengths at various resampling points is determined
and assigned suitable gray-scale values, where white repre-
sents larger filter sizes. As evident from Fig. 9a, the filter
size changes in a periodic sinusoidal fashion. Also, the filter
size adapts to the data complexity, as shown in Fig. 9b. For
instance, the dark areas around the flow are reconstructed
with smaller length filters. The position of the resampling
point still modulates the filter size. Table 1 provides a com-
parison of the filter sizes for the position-adaptive, data-
adaptive, and the traditional cubic convolution filter [24].
Similarly, we show yet another example of image recon-
struction to illustrate that the methods work on images of
various kinds. Finally, we provide another example to il-
lustrate the usefulness of our methods. In this example the
image of the mandrill is subjected to the following trans-
formations:

e translate by (0.3, 0.3) and rotate by 45 degrees;
translate by (0.3, -0.3) and rotate by —20 degrees;
translate by (0.1, 0.1) and rotate by -5 degrees; and
translate by (0.1, -0.1) and rotate by —20 degrees.

(a) (b)

Fig. 9. Filter size used for generating Fig. 8 for position-adaptive filters
(a) and for data-adaptive method (b). Bright values stand for larger filter
sizes. The error threshold here was set to 0.02. The average filter size
was measured to be at 2.4.

Similar repeated resampling schemes have been used by
other authors to show the viability of interpolation schemes
[3], [29]. Thus, we get our final image back in the position
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we started out with. By comparing the final image with the
initial image, we can estimate the cumulative error in-
curred. Here we compared the results when the interpola-
tion was performed by bilinear, cubic, or by our adaptive
methods. Fig. 10 shows-the results. It is easy to notice (near
the eyes and mane) that most blurring occurred when the
bilinear filter was used, while the least occurred when our
adaptive methods were used. A numerical comparison of
the final and original images also supports the claim that
our methods generate the minimum error.

()

()

Fig. 10. Comparison of interpolation schemes. (a) -Original image. (b)
Interpolation with bilinear interpolation (half-filter size 1). (c) Interpolation
with cubic convolution (half-filier size 2). (d) interpolation with accurate
and adaptive methods. The error threshold was set to 0.02. The average
half size of the filter for the adaptive scheme was measured at 2.6.

6 ACCURATE AND ADAPTIVE RECONSTRUCTION OF
3D SIGNALS: ‘

In this section, we implement our schemes for particular 3D
resampling schemes (slicing and volume rendering). We also
show the impact of accurate function evaluation by estimat-
ing surface normals as part of a simple ray-caster and then
using the estimated normal in a shading algorithm.

6.1 Slicing

The error bounds and filtering schemes can also be adapted
to volumetric applications like slicing. A position- or data-
adaptive scheme similar to the one presented in the previ-
ous section is useful to guide the reconstruction process
inherent in the slicing algorithm. The data-adaptive scheme
requires that the energy or the maximum of the underlying
function be determined over a neighborhood. To compute
these quantities, we developed efficient algorithms that scan
the image or volume in a systematic manner and exploit the
inherent coherency of the computations through the use of
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circular buffers. Once the local energy or maximum is
found for each voxel, it is stored in a volume of the same
size as the original.

The slicing algorithm rotates the desired slicing plane
(described by a direction vector for the normal and an off-
set from the origin) onto the XY plane thus defining an im-
plicit affine transformation T. The advantage of this slicing
implementation is its ability to control the resampling
scheme. Another reported work on volumetric slicing is
found in [30]. The accuracy of the method reported is lim-
ited because trilinear interpolation is used to determine
function values at intermediate locations. To use the adap-
tive schemes of Section 4, we use a derivative of (20) to de-
termine the filter size (28).

axg(sin - Isin - sin —-
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Fig. 11 shows slices of a 256 volume MRI head dataset
reconstructed by our adaptive schemes. The slicing plane
in Fig. 11a is almost vertical, while the one in Fig. 11b has
a normal with direction cosines of (1, 1, 1) and passes
through the center of the volume. The values of frequency
guards ry, r,, and r, were found to be 0.086, 0.055, 0.031,
respectively. We employ Hamming windows to subdue
ringing effects for our schemes. The error threshold for
the adaptive schemes is 0.01, while the minimum error
used to determine the optimal neighborhood size is 107
This minimum error threshold translates to a neighbor-
hood size of 31 for the data-adaptive scheme. We also
measured the filter sizes for the oblique slicing scheme.
The average half filter size for position-adaptive filtering
scheme was measured closer to 2 (Fig. 11c), while the
same quantity was measured at 1 for the data-adaptive
scheme (Fig. 11d). As shown in Fig. 11d, higher order fil-
ters are only used at some resampling points. Once again,
for the position adaptive scheme, the half filter size varies
in a periodic manner. On the other hand, the half filter
size varies less regularly throughout the slice. It is im-
portant to note that there still exist some regions where
the variation in filter size occurs due to changes in data
complexity. However, the variation of the data complex-
ity is not significant enough for the regular pattern of the
position-adaptive scheme to be completely skewed. This
explains the presence of checker patterns in Fig. 11d.

To compare the quality of the reconstruction, a useful
visual tool is the gradient image (Fig. 12). The gradient im-
age consists of two components, namely magnitude and
angle. The gradient angle image shows the orientation of
the gradient and hence surface. We show the gradient
magnitude images for the slices obtained by trilinear inter-
polation (Fig. 12a and b) and by our methods (Fig. 12¢c and
d). Blurring in an image causes thickening of edges and loss
of fine detail. This blurring manifests itself in a magnitude
image by thicker edges in the gradient magnitude images.
For example, the image of Fig. 12a has thicker edges than
that in Fig. 12c. The gradient angle image for the trilinear
interpolated slice (Fig. 12b) is more blocky and disoriented
than the one obtained by our methods (Fig. 12d). Optimi-
zation can be realized by precomputing subexpressions
(involving the frequency guards and constants) and by us-

(a) (b)

() (d)

Fig. 11. Oblique slicing of a 3D MRI head dataset. (a) An almost verti-
cal slice passing through the center. (b) An oblique slice through the
center with direction cosines (1, 1, 1). (c) The fitler sizes used in the
position-adaptive scheme (average half-filter size was measured at 2).
(d) Filter sizes used in the data-adaptive scheme (average value was
measured at 1). The error threshold was set to 0.01.

ing precomputed tables. As a result, the actual time ex-
pended in obtaining the slice of size 256 (Fig. 12b) using
the adaptive schemes (2.6 seconds) is only three times as
much as the time expended when the trilinear filter is filter
is used (0.74 seconds).

6.2 Normal Estimation and Shading

In applications like volumetric ray-casting, the shape of the
volume is discerned though shading. Typically, Phong
shading is used [16]. The Phong illumination operator P
takes the derivative (normal) at a point x, together with
light, surface, and eye position information and computes
the color at the point x. We denote the derivative of the

continuous function fby f and the derivative of the recon-
structed continuous function f, by f,. The discrete image of

f is denoted by fs. Since, except for the derivative, all
other parameters are known, we will denote the illumina-
tion operator by P( fr(x)) .

A cheap way to estimate normals (i.e., differentiate) is
through the use of the central derivative operator. Thus, the
normal, N, at a point is given by the difference in the func-
tion values measured at grid distances along each principal
direction. At each of these points, the function value can be
determined by any-of the interpolating schemes (29).

Dx = f(x+1,y,2) - f(x - h,y,2)

Dy =f(x,y+h,z)—f(x,y—h,z)
Dz = f(x,y,z+h)— f(x,y,z—h)
N =(Dx,Dy,Dz) / 2h (29)
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© ' (d)

Fig. 12. Comparison of image quality using gradient images. (a) Gradi-
ent magnitude image. (b) Gradient angle image of oblique slice ob-
tained by trilinear interpolation. (c) Gradient magnitude and (d) gradient
angle image of slice obtained by adaptive methods. The improvement
through our methods is obvious.

The central difference operator is far from an ideal high-
pass filter since it eliminates fine details (i.e., high fre-
quency data). One can use a better normal estimation
method such as the cubic spline filter [1] or a truncated
ideal differentiation filter [11]. Nevertheless, the central
difference is commonly used for its low computational cost
as well as its tendency to suppress noise.

The process of computing P(fr(x)), for any point x, can
be implemented in several ways. We survey these, starting
from the most time consuming method, up to the fastest
one.

1) Reconstruct the continuous function f, from f,[kh], as in
Section 3, by convolving it with a reconstruction filter,
and then differentiate it at point x to compute fr(x). H-
nally, use this value in the shading equation to com-
pute P(f.(x)). If we denote by H the reconstruction fil-

ter, and by ® the convolution operator, then this
method can be summarized by the expression:

ﬂﬂzPG%ﬁ@Hﬂ

This is a rather expensive approach since reconstruc-
tion will have to be performed for each of the differ-
entiation filters (e.g., six points in (29)). One can re-
place the differentiation in (31) with a convolution by a
filter which we denote by D. Therefore, we can write:

P(f,)=P(D®(f, ® H)) G

2) Reconstruct the continuous derivative fr directly from

(30)

flkh] by convolving it with a specially designed dif-
ferentiation filter, and then sample it at point x [1],

{23]. This approach can be derived directly from (30)
by expressing the convolution as a sum and then tak-
ing derivative inside the summation.

P(£)= P(f, ® (D ® H))

For example, if we use the ideal reconstruction filter,
the Sinc, to implement H, then the ideal differentia-
tion filter is:

32)

d
D®H= %(sin(x)‘/ x} = cos(x) / x —sinx / x> (33)

3) Compute the discrete derivative function fs[kh] from

fi[kh]. For example, if we use central difference for
implementing D, then the (x, y, z) points in (29) are
grid points and / is an integer. Since this computation
is done only at the grid points, there is no need for re-

construction at this step. Then, one reconstructs fr at
the arbitrary point x from fs[kh] by convolving it with
a reconstruction filter [11]. Finally, this value is used
to compute P( fr(x)). This approach is a commutative
variation of (31):

P(f)=P(D® f)® H)

The derivative of the sampled function can be com-
puted because we use only the already available func-
tion values, that is grid points, in which case f; = f.

4) As in the previous method, compute fs[kh]. Then use

(34)

these values to compute P( fs[kh]), the illumination at
the grid points, Then reconstruct the illumination at the
point x by convolving it with a reconstruction filter as
in Section 3. This approach can be summarized by:

P(f)=PD@f)®H

(35)

Since P is not a linear operator, this approximation is
not equivalent to the first three methods.

The first and third approaches are equivalent. However,
if one would use perfect reconstruction and differentiation
filters, all three methods will indeed result with the same
accurate illumination value. The fourth approach is the
most efficient method since illumination is not computed
for every sample point. For this reason, it is a commonly
used method for volume shading [16]. We compare our
reconstruction accuracy in the framework of the fourth ap-
proach. That is, we shade the data points using Phong
shading and then interpolate (reconstruct) the color at the
resampling points [16]. In addition to being fastest and
most widely used, this method also provides the best way
to show the effects of the reconstruction process with no
interference from the derivative and illumination operators.

We implemented a simple ray-caster, which shoots hori-
zontal rays into the volume. The results of using trilinear
and’accurate interpolation schemes on the MRI head data-
set are shown in Fig. 13. The rays were terminated when
intensity (not opacity) value above a certain threshold was
detected. At this point, we employed a preshaded volume
to compute the shade which was assigned to a pixel. The
function determination for ray termination was performed
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using a trilinear interpolation scheme. The choice of this
interpolation scheme at this stage of the algorithm was
dictated more by considerations of efficiency. However, the
actual shade computations were computed with adaptive
filters for Fig. 13b. We did not include composition in our
implementation since it introduces additional phenomenon
which require further analysis that is beyond the scope of
this work. Our implementation makes it easier to discern
the effects caused by reconstruction. Sufficient offsets and a
zooming facility allow arbitrary resampling schemes to be
tested.

(a) (b)

Fig. 13. Ray-casting example (a) using trilinear interpolation and (b)
using accurate methods.

7 CONCLUSIONS

We developed a new approach to the characterization and
measurement of reconstruction error. Qur method, based
on spatial domain error analysis, uses approximation the-
ory to develop error bounds for reconstruction. We provide
an efficient way to guarantee an error bound at every point
by varying filter size. In addition, we support position-
adaptive and data-adaptive reconstruction, which adjust
filter size to the location of reconstruction and the data
complexity. While the position-adaptive scheme adheres
better to the error bound, the data adaptive has a smaller
average filter size. Performing accurate reconstruction can
potentially shift the burden from resampling schemes to
reconstruction, thus allowing the use of simpler resampling
schemes in many computer graphics applications such as
image processing, volume rendering, and texture mapping.
Our methods provide the user with a powerful tool for
achieving any desired image quality, while incurring space
and computation cost that are comparable to those of ex-
isting methods. As part of future work, we hope to consider
filters other than Sinc and windowed Sinc which will re-
quire a closer look at the non-Sinc error and employ other
sampling theorems especially those from the wavelet and
frames literature.

APPENDIX:
BOUNDS FOR TRUNCATION ERROR

Here we present results from Complex Analysis which are
used in the derivation of bounds for the truncation error of
the Shannon’s Sampling Theorem. Inherent to this ap-
proach is the use of a contour C or a directional closed path

in the complex plane. Such a contour is shown in Fig. 14.
Thus, the contour (red counterclockwise path) in our ex-
ample is a rectangle of size d x 2M + 2 centered at the re-
sampling point R, where 4 is the height of the contour. The
contour is larger than the filter by a distance of unit  (or a
distance of /2 on both sides). This size allows for all the
2M + 1 sampled data points required for interpolation to be
inside the contour.
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Fig. 14. Contour Integration applied to the computation of error bounds.
The inside rectangle is equivalent to the actual filter with half length M,
while the outside rectangle is the contour C.

The intuition behind using the contour is that it gener-
alizes the process of filtering to the complex plane. The
convolution in (15) is embedded in the complex plane. For
example, the Sinc function, 5(z, h), still evaluates to S(x, k)
at points z = x. Similarly, the underlying function is still
defined at the integral values on the X-axis. However, on
points z = x + jy, y # 0, the reconstructed function and the
Sinc are evaluated in the complex plane. The contour C is
the equivalent to the filter used to reconstruct real valued
signals and could be of any shape. It is imperative though
that it needs to be closed and directional [31]. The rectangle
is normally chosen for its simplicity.

The embedding of the infinite sum onto the complex
plane enables one to convert the evaluation of the infinite
sum into a problem of evaluating an integral over a closed
contour. The Cauchy Residual Theorem provides the machin-
ery to compute the equivalent integral over the contour. We
thus evaluate the integral over a finite sized interval on the
X-axis. Along the Y-axis, however, the region of integration
is still unbounded. The key is to show that the equivalent
integrand approaches zero as one moves away from the
horizontal axis in the vertical direction. More details can be
found in [31].

We now state a theorem which provides us with a way
to compute the error bound for filtering interpolation
schemes. This contour integration used in the theorem once
again generalizes the infinite sum of the contributions from
sampled data points to the reconstructed value. Further
details on contour integration and other results in complex
analysis can be found in [31].

THEOREM. Let C be the contour (shown in Fig. 14) over the do-
main D (a subset of the complex plane), and let function f
be analytic everywhere therein (ie., it is defined every-
where, and all derivatives exist). Let G(z) = sin(mz/h),
where z is a point in the complex plane, and let the set
Ind(M) of sampled data points lying within the confines of
the contour C be defined as follows:
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Ind(M)={k|n-M-1<k<n+M+1  (36)

Then, f1(z) = f(iz)/ G(2) is analytic everywhere except at z =
kh, k e Ind(M), where the function G(z) evaluates to zero.
If the function is resampled at z = x on the real line, then
the truncation ervor there is given by

f(z)

E{)G (2)(z — x)

PrOOF. The starting point of this proof is the Cauchy Inte-
gral Formula [31], which allows us to compute the
function f;(x) as follows:

e,(f,x,k,h,M)= dz 37)

R s
sin 7 - C sin(yr EJ(Z - x)

As mentioned earlier, the integral is performed on a
contour C (Fig. 14). To actually evaluate the integral,
the contour C is altered because the function G(z)
evaluates to zero at all sampled data points, z = ki,
k e IndM). Thus at these points poles are introduced
since the function f;(z) is undefined and the new contour
C’ now skirts around these points (Fig. 15). In the limit-
ing case, the contour C replaces the newer one C'. The
integration over the contour ' is divided as follows:

e the integrals evaluated on clockwise contours
around sampled point S, k € Ind(M), each of
which is denoted by Q(Sp);

e the integrals along both the straight lines leading
to and from the poles; these cancel each other;

e the integrals along the horizontal contours C; and
C;; and

o the integrals along the vertical contours C, and C,.

The residues or the quantities Q(5y) at each one of the
poles are evaluated in the limiting case and are given by

flih) VSR
d( .z
= [sm 7 EJ :kh(kh - x)

Thus, the right-hand side in (38) can be written as

Q(Sk) =

T T L D W EA LT
sin 7 ﬁ (C1+C2+C3+C SIH[ )(Z — x) kelnd

Multiplying throughout (40) by sinusoidal term on
the left and substituting the expression for Qy, we get

X
sin 7w+
(C1+Co+Ca+Cy) sin[ﬂ' EJ(Z —x)
k
+ z sin 7w f —(_1) f(kh)
kelnd h z (kh _ X)
h (41

The second term in (40) corresponds to the first M
terms of the infinite reconstruction sum (15). Thus, it

can be inferred that the first term in (40) is the trun-
cation error. Hence, it is true that the truncation error

is given by
o x
sm[n ﬁj i)
27 fﬁ z
o sin(ﬂ h}(z - X)

C=C+C+C+C,

e,(f, x, kb, M)= dz

(42)

The integral in (37) is computed over the contour C.
By using other functions for G(z), we can determine
the error for various function approximations.

PROCE. To obtain a proof of Theorem 1 of Section 3.1.1, we
consider each part of the C' that has a nonzero con-
tour integral. Along the horizontal parts of the con-
tour, C; and GC;, the contribution to the integral in (42)
is zero. We can show this by first considering the de-
nominator sin(zz/h), where z = x” + jy’ is any point in
the complex plane. It is true that

“in {x + jy’)
T

4

(43)

b/
7Y

T
; cosh T

The numerator in (42) for all contours is bounded
by E¢cosh(zr 1y | /h) [14]. Since the cosh function grows
faster than the sinh function [31], for the same argu-
ment, on contours C; and C; in the limiting case, the
numerator becomes zero.. Now let us consider
contours C, and C,. The contour C, lies along line x
=h(n-M-1/2) and thus

bia
Ef cosh A

ry’

e

After further simplification, the integrand along
contour C, is now bounded by

‘ f(z) L

. < (44)
sin[n h)(z —x)

T
cosh —

T
z E, cosh—ry’
f(z) < f 7Y 45)
. z T, )
sm[n E](z -x)| coshy (Mh)" +y
Cy
iy A R L[4
R
1 ¥ i | ] ki ]
-+ A A O A A L
c Sh-M sn-l Sn sn+1 S11+2 Sn+-M
2 C4
v Cs

|

Fig. 15. Contour Integration of (40). The top portion of the contour in
Fig. 14 is modified to include the poles created by the sampling points.
The new contour include the segmented portion on the top (Cy), a
complete horizontal path (Cz), vertical paths (C, and Cy), and 2M + 1
clockwise paths leading to and from the sampled points.
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It can be shown that the integrand along C, is also
bounded by the same quantity. Recognizing that
cosh(z) grows faster than ¢’ and then evaluating the in-
tegrals for both remaining contours, we conclude that

J?
2By,

M(1-1)

. X
sin —-
h

e(f,, x, k,h, M) < (46)
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